Tuesday, December 31, 2019
Roman Empire Vs. Han Dynasty - 939 Words
Compare and Contrast Essay Roman Empire vs. Han Dynasty Bethany Corl HIEU 201-B11 September 29, 2014 Compare and Contrast Essay The Roman and Han empires flourished in culture, wealth, and technological advances at their pinnacle, leading not to future stability, but to greed, corruption, and ultimately their downfall. The Roman and Han empires were different with respect to how each came to gaining their power. However, each held several similarities within their governments, religion, technological contributions, and downfalls. These differences and similarities can be seen by taking a closer look at each empire. During the early 8th century B.C.E., Rome was considered just a city in Italy, a crossroads within the Mediterranean. Residents had created several communities, and eventually they became one and created the Roman Republic. The patricians, also referred to as the elite and plebeians known as the general population were said to have ran the Roman empire. The Han Dynasty began this era after gaining power from the Qin. In China, the Han was in control and had the responsibility of advancing and sustaining the Han Chinese Empire for the next 400 years. A difference can already be seen between the two empires in the management of their communities. The Roman Empire had a democratic system but was said to have been ran more like a monarchy. In similarity the Han Empire also had a monarchy. The two empires had government strategies thatShow MoreRelatedCatal Hyuk2725 Words à |à 11 PagesMountains Bay of Bengal Harappa Red Sea Persia Persian Gulf CHAPTER FIVE: Early Society in East Asia IDENTITIES: Staple Foods Xia ââ¬Å"Chinaââ¬â¢s Sorrowâ⬠ââ¬Å"Mandate of Heavenâ⬠Cowrie Shells Extended Family Consort Dynasty Loess Hereditary State Zhou Decentralized Administration Artisans Ancestor Veneration Oracle Bones Steppe Nomads MAPS: Yangzi River Steppes of Eurasia Southeast Asia Indian Ocean Burma (Myanmar) Mojeno-daroRead MoreMalaysia Traditional Games5012 Words à |à 21 Pagesincluding pride, kite, selambut, sepak raga, tops, kabaddi, mahjong, etc.. CONGKAK The wordà congkakà is believed to originate from oldà Malayà congak, meaning mental calculation. The oldestà mancalaà game boards were found in a ruined fort of Roman Egypt and date back to the 4th century AD by our Persatuanà National Geographic . After that, the game was likely introduced to Southeast Asia by Indian or Arab traders in the 15th century throughmerchants via Malacca , an important trading post atRead MoreEssay about Summary of History of Graphic Design by Meggs14945 Words à |à 60 Pagespower of the Persian Empire. Reading and writing had become more important by this time, because the expansion of information and knowledge exceeded the ability of oral communication. - Most of the knowledge documented by the Greeks was lost due to the fragile nature of papyrus scrolls and the damp Greek climate. - After the death of Alexander the Great, Greek civilization and its alphabet became influential throughout the whole world. - The Latin alphabet came to the Romans from Greece by wayRead MoreGp Essay Mainpoints24643 Words à |à 99 Pages GP NOTES 2010 (ESSAY) Content Page 1. Media a. New vs. Traditional b. New: narcissistic? c. Government Censorship d. Profit-driven Media e. Advertising f. Private life of public figures g. Celebrity as a role model h. Blame media for our problems i. Power + Responsibility of Media j. Media ethics k. New Media and Democracy 2. Science/Tech a. Science and Ethics b. Government and scientist role in science c. Rely too much on technology? d. Nuclear technology
Monday, December 23, 2019
Analysis Of Chasing Lincoln s Killer - 1188 Words
. Swanson, James L. Chasing Lincolnââ¬â¢s Killer. New York: Scholastic Press, 2009. 2. Chasing Lincolnââ¬â¢s Killer is a biography, as it mainly focuses on John Wilkes Boothââ¬â¢s plan to assassinate the president along with the secretary of state and vice president, the actual assassinations in action, and Boothââ¬â¢s attempt to escape to the south, along with personal retellings of what happened by the people involved. 3. Swanson has been fascinated with the assassination of Lincoln since he was ten when his Grandma gave him an engraving of the pistol John Wilkes Booth used to kill Lincoln. Swanson now serves on the advisory council of the Fordââ¬â¢s Theater Society and is a member of the advisory committee of the national Abraham Lincoln Bicentennial Commission. He is a lawyer in Washington D.C. He was born on Lincolnââ¬â¢s birthday and has collected books, documents and artifacts about the life and death of Abraham Lincoln all his life. He has also published other books on the same subjects: Manhunt: The 12-day Chase for Lincolnââ¬â¢s Killer and Lincolnââ¬â¢s Assassins: Their Trial and Execution. 4. Chasing Lincolnââ¬â¢s Killer is a complete retelling of the assassination of Abraham Lincoln along with the 12-day manhunt that followed for the infamous John Wilkes Booth and his accomplices. The Confederacy has just recently lost the Civil War to the Union. John Wilkes Booth, a devoted confederate, decides to do something with his strong anger towards the union: killing the president of the United States.Show MoreRelatedAnalysis Of Chasing Lincoln s Killer By James L. Swanson1237 Words à |à 5 Pagesfree. While most maintained peace in order to prevent more mayhem, some decided to act out. John Wilkes Booth was one of these such men, and he demonstrated his anger through murder. Booth assassinated President Abraham Lincoln on April 15th, 1865 .The book, Chasing Lincolnââ¬â¢s Killer, written by James L. Swanson reports the anger felt by Booth, in addition to the manhunt that followed, and the shocked nation left behind. The magnitude of emotions felt by Booth leads him to this traitorous act, and thisRead MoreMarketing Mistakes and Successes175322 Words à |à 702 Pagesfollowing classification of cases by subject matter to be helpful. I thank those of you who made this and other suggestions. Classification of Cases by Major Marketing Topics Topics Most Relevant Cases Marketing Research and Consumer Analysis Coca-Cola, Disney, McDonaldââ¬â¢s, Google, Starbucks Product Starbucks, Nike, Coke/Pepsi, McDonaldââ¬â¢s, Maytag, Dell, Hewlett-Packard, Newell Rubbermaid, DaimlerChrysler, Kmart/Sears, Harley-Davidson, Boeing/Airbus, Merck, Boston Beer, Firestone/Ford
Sunday, December 15, 2019
Wattie Frozen Foods Ltd Free Essays
The firmâ⬠s competitive environment is in New Zealand, Australia, and the Pacific Rim. They have head quarters in Auckland and four factories located in Gisborne, Hastings, Fielding, and Christchurch. The range is frozen and dehydrated vegetable products, main products being peas, beans and frenches fried potatoes. We will write a custom essay sample on Wattie Frozen Foods Ltd or any similar topic only for you Order Now Growers are contracted to WFF and are provided with a significant amount of technical assistance, including the availability of quality seed stock, and a wide variety of agricultural management assistance. Once crops are deemed ready they are harvested quickly and transported immediately to the branch factory, where the crop reception department tests the quality of the incoming produce. At the factory the season processing is done around the clock. I.e.) potatoes are first washed, then sliced, deep-fried, frozen and packed. Peas are washed, graded, and then frozen for bulk storage. Beans are washed, graded dried, and packed. Problems with seasonality in the business are that you may run out of stock in a non-season where that product is not being produced. To get that product in a non-season could be quite expensive. The season for that product could produce a bad crop and you would have to wait until next season to get the next crop. Work Center Management is that the organization is divided up into a set of semiautonomous work centers. Each work center will have skilled supervisors and employees who will be able to make critical decisions to manufacture a quality product in a timely manner. There is daily reporting because the information will be more useful and ownership of the information is more likely. Daily reporting will occur because is will come from the bottom and travel itâ⬠s way up. The motivation for WCM consisted of 2 things: 1. The need to change the emphasis from reporting to managing à · Shortening the time between actions and the subsequent reporting results. à · Ensure focused accountability through clearly defined responsibilities for costs and the power to act. 2. The need for staff involvement and operational involvement It is necessary to change the organizational culture because WCM made managers fully responsible for their outputs and use of inputs and resources including labor, equipment, services and inventories. Thus management has to be empowered, responsible and fully empowered. The culture change was achieved by dividing each factory into units, which were largely self-contained and small enough to ensure focused management and accountability. Each of these units, were to be known as work centers. Each work center had one manager, the site manager (factory manager) would support the work center managers to coordinate work between the work centers and solve any conflicts. The physical numbers tie into the financial accounting system by cost is assigned to processes or products at the basis of the actual consumption of physical resources. The benefits of WCM are that it is integrated with other systems and programs, which provides better managerial reporting. It doesnâ⬠t just provide cost and financial performance measures, but also provides monthly summaries of wide physical measures to evaluate the work centers. The WCM has resulted in improved control and cost reductions in difficult to control areas. Other benefits of WCM include: à · Improved focus on quality production Potential problems in operating the WCM system are that eventually staff and management will get lazy on the daily reporting aspects. There may be staff turnover, as some managers will get promoted and training will have to be given to the next line of upcoming management. WCM will have to be continuously monitored to see the cost vs. benefit analysis. The types of operations that lend themselves to daily financial reporting are labor, electricity, materials, and machinery. How to cite Wattie Frozen Foods Ltd, Essay examples
Saturday, December 7, 2019
Psy 387 Study Guide First Exam free essay sample
Genes- units of heredity that maintain their structural identify from one generation to another xi. Come in pairs because they are aligned along chromosomes xii. Gene is a portion of a chromosomes, which is composed of deoxyribonucleic acid xiii. A strand of DNA serves as a template for ribonucleic acid which is a single strand molecule xiv. Can be either homozygous ( identical pair of genes on the two chromosomes) or heterozygous (unmatched pair of genes) xv. Dominant ââ¬â gene shows a strong effect in either the homozygous or heterozygous condition xvi. Recessive- gene shows its effect only in the homozygous condition j. Proteins xvii. Enzymes- biological catalyst that regulate chemical reactions in the body 4. Sex-Linked and Sex-limited Genes k. Sex-linked genes- genes located on sex chromosomes (usually X chromosomes) xviii. Male: XY Female: XX l. Autosomal genes- chromosomes that are not on sex chromosomes m. Sex-limited genes- which are present in both sexes (generally on autosomal genes) but active mainly in one sex xix. Ex- breast size in women 5. Heredity and environment n. To determine what kind of contributions heredity and environment has, researchers focus on comparing monozygotic (from one egg) twins and dizygotic (from two eggs) twins. o. Second kind of evidence is studies of adopted children to see if they relate to parents p. Third kind researchers find genes linked to a disorder q. Sometimes, environment might be based on genes due to the multiplier effect: if genetic or prenatal influences produce even a small increase in some activity the early tendency will change the environment in a way that magnifies that tendency Nerve Cells and Nerve Impulses Chap 2 . Anatomy of Neurons and Glia r. Neurons ââ¬â Receive information and transmit it to other cells 7. The Structure of an Animal Cells s. Membrane- the surface of a cell, also called plasma membrane, is a structure that separated the inside of the cell form the outside environment t. All animal cells have (other than red blood cells) have nucleus the structure that contains the chromosome, mitochondrion the structure that performs metabolic activities, providing the energy that the cell requires for all other activities. Also has ribosomes- are the sites at which the cell synthesizes new protein molecules endoplasmic reticulum- a network of thin tubes that transport newly created proteins to other locations 8. The Structure of a Neuron u. Neurons are distinguished from other cells by their shape, the larger neurons have components: dendrites, soma (cell body) an axon and presynaptic terminals v. Motor Neuron- has its soma in the spinal cord. It receives excitation from other neurons through its dendrites and conducts impulses along its axon to a muscle w. Sensory neuron- is specialized at one end to be highly sensitive to a particular type of stimulation such as light sound or touch x. Dendrites- are branching fibers that get narrower near their ends 4. Receives information from other neurons 5. Dendritic spines ââ¬â the short outgrowths that increase the surface area available for synapses y. Cell Body or Soma contains the nucleus, ribosomes, mitochondria, and other structures found in most cells z. Axon- is a thin fiber of constant diameter, in most case longer than the dendrites xx. Axon is the information sender of the neuron, converting an impulse toward other neurons or an organ or muscle xxi. Many vertebrate axons are covered with an myelin sheath- insulating material, with interruptions known as nodes of Ranvier xxii. An axon has man branches each of which swells at its tip forming a presynaptic terminal (end bulb or bouton) xxiii. Afferent axon brings information inside, efferent brings information out {. Interneuron or intrinsic neuronââ¬â if a cellââ¬â¢s dendrite and axon are entirely contained within a single structure 9. Glia |. Glia are the other major components of the nervous system, do not transmit information over long distance xxiv. Glia are smaller but also more numerous than neurons xxv. Astrocytes- wrap around the presynaptic terminals of a group of functionally related axons. They help synchronize the activity of the axons enabling them to send messages in waves they also help remove waste material created when neurons die and control the amount of blood flow to each brain area. Lastely they dilate blood vessels to bring more nutrient into that area 6. Blood brain barrier 7. Allows small uncharged molecules, including oxygen and carbon dioxide cross freely 8. Molecules that dissolve in the fats of the membrane also cross passively 9. For certain other essential chemicals the brain uses active transport, to bring in glucose, amino acids etc xxvi. Microglia- very small cells also remove waste material as well as viruses, fungi, and other microorganisms xxvii. Oligodendrocytes- build myelin sheath in the brain and spinal cord and schwann cells in the PNS xxviii. Radial Glia guide the migration of neurons and their axons and dendrites during embryonic development }. Nourishment Of Vertebrate Neurons xxix. Vertebrate neuron depends almost entirely on glucose, a simple sugar xxx. Glucose is practically the only nutrient that crosses the blood-brain barrier in adults xxxi. Thiamine- a chemical that is necessary for the use of glucose 10. The Nerve Impulse Module 2. 2 ~. The Resting Potential of the neuron xxxii. Electrical gradient- a difference in electrical charge between the inside and outside of the cell xxxiii. In the absence of any outside disturbance the cell membrane mains an polarization- meaning a difference in electrical charge between two locations xxxiv. Resting potential- the difference in voltage in a resting neuron, which is mainly the result of negatively charged proteins inside the cell . Forces acting on sodium and potassium ion xxxv. Sodium-potassium pump a protein complex repeatedly transports three sodium ions out of the cell while drawing two potassium ions into the cell. xxxvi. When the neuron is at rest, two forces act on sodium both tending to push it into the cell. 10. First consider the electrical gradient, sodium is positively charged and the inside of the cell is negatively charged. Opposite electrical charges attract so the electrical gradient tends to pull sodium into the cell. 11. Second consider the concentration gradient; the difference in distribution of ions across the membrane- sodium is more concentrated outside than inside so just by the laws of probability sodium is more likely to enter the cell than leave. . The Action Potential xxxvii. Hyperpolarization- which means increased polarization xxxviii. Depolarize- reduce its polarization toward zero xxxix. Threshold of excitation-a massive depolarization of the membrane. 12. Causes a rapid flow of ions across the membrane. xl. Action potential- a rapid depolarization and slight reversal of the usual polarization . The molecular basis of the action potential xli. The membrane proteins that control sodium entry are voltage-gated channels membrane channels whose permeability depends on the voltage difference across the membrane xlii. All-or-none law- amplitude and velocity of an action potential are independent of the intensity of the stimulus that initiated it . The Refractory period xliii. Refractory period- immediately after an action potential , the cell resists the production of further action potentials 13. First part is called the absolute refractory period, where the membrane cannot produce an action potential regardless of the stimulation 14. The second part is the relative refractory period, a stronger than usually stimulus is necessary to initiate an action potential . Propagation of the action potential xliv. Action potential begins on the axon hillock, which is a swelling where the axon exits the soma xlv. Propagation of the action potential- describes the transmission of an action potential down an axon xlvi. Reviewing action potential 15. As a result of synaptic input, sodium channels open and depolarize the axon membrane to its threshold 16. Sodium ions rush in and depolarize the membrane even further 17. Positive charge flows down the axon and opens voltage-gated sodium channels at the next point 18. At the peak of the action potential, the sodium gates snap shut. They remain closed for the next millisecond or so, despite the depolarization of the membrane 19. Because the membrane is depolarized, voltage-gated potassium channels open 20. Potassium ions flow out of the axon, returning the membrane toward its original depolarization 21. After the membrane returns to its original level of polarization the voltage-dependent potassium channels close . The myelin Sheath and salutatory conduction xlvii. Myelin- an insulating material composed of fats and proteins xlviii. Myelinated axons- those covered with a myelin sheath is the same, found only in vertebrates xlix. Salutatory conduction- the jumping of action potentials from node to node l. Local neurons-neurons without axons exchange information with only their closest neighbors li. Graded potential- membrane potential that vary in magnitude without following the all-r ââ¬ânone law 11. Chapter 3: Synapses lii. in late 1800ââ¬â¢s ramon y cajal found a narrow gap separating one neuron from another. liii. In 1906 charles scrot Sherrington physiologically demonstrated that communications between one neuron and the next differs from communications along a single axon 22. Che inferred a specialized gap between neurons and introduced the term synapse . Properties of synapses liv. Reflexes- automatic muscular responses to stimuli 23. the circuit from sensory neuron to muscle response is called a reflex arc 24. Sherrington observed several properties ââ¬â a. Reflexes are slower than conduction along an axon b. Several weak stimuli presented at slightly different times or slightly different locations produce a stronger reflex than a single stimulus does c. When one set of muscles becomes excited a different set become relaxed . Temporal Summation lv. Sherrington found that repeated stimuli within a brief time have a cumulative effect, called temporal summation lvi. Sherrington surmised that a s ingle pinch produced a synaptic transmission less than the threshold for the postsynaptic neuron- the cell that receives the message (the cell that delivers the synaptic transmission is the pre-synaptic neuron) lvii. Unlike action potentials which are always depolarizationââ¬â¢s, graded potentialââ¬â¢s may be either depolarization (excitatory) or hyperpolarizationââ¬â¢s (inhibitory) a graded depolarization is known as an excitatory postsynaptic potential (EPSP) 25. EPSP occurs when sodium ions enter the cell 26. If an EPSP does not cause the cell to reach its threshold the depolarization decays quickly . Spatial Summation lviii. Spatial summation- synaptic inputs from separate locations combine their effects on neurons . Inhibitory Synapses lix. Temporary hyperpolarization of a membrane called an inhibitory postsynaptic potential or IPSP resembles an EPSP 27. Occurs when synaptic inputs selectively opens the gates for potassium ions to leave the cell carrying a positive charge with them or for chloride ions to enter the cell carrying a negative charge 12. Chemical Events at the Synapse Module 3. 2 lx. Synapses rely on chemical processes, which are much faster and more versatile. . The Sequence of Chemical Events at a synapse lxi. Events in Order 28. The neuron synthesizes chemicals that server as neurotransmitters. It synthesizes the smaller neurotransmitters in the axon terminals and neuropeptides in the cell body. 29. The neuron transports the neuropeptides that were formed in the cell body to the axon terminals or to the dendrites (Neuropeptides are released from multiple sites in the cell) 30. Action potential travels down the axon. At the presynaptic terminal, an action potential enables calcium to enter the cell. Calcium releases neurotransmitters rom the terminals and into the synaptic cleft (the space between the presynaptic and post synaptic neurons 31. The released molecules diffuse across the cleft, attach to receptors and alter activity of the postsynaptic neuron 32. The neurotransmitter molecules separate from their receptors. Depending on the neurotransmitter, it may be converted to into inactive chemicals 33. The neurotransmitter molecules may be taken back into the presynaptic neuron for recycling or may diffuse away. In some cases, empty vesicles are returned to the cell body 34. Some postsynaptic cells send reverse messages to control the further release of neurotransmitter by presynaptic cells. . Types of neurotransmitters lxii. Neurotransmitter- at a synapse one neuron releases these chemicals that affect a second neuron 35. Amino acids- acids containing an amine group (NH2) 36. Neuropeptide- chains of amino acids 37. Acetylcholine-a chemical similar to an amino acid except the NH2 group has been replaced by an N(CH3)3) group 38. Monoamines- neurotransmitter containing one amine group (NH2) formed by a metabolic change in certain amino acids 39. Purines- a category of chemicals including adenosine and several of its derivatives 40. Gases- nitric oxide and possibly others lxiii. Nitric Oxide- a gas released by many small molecules 41. Increases blow flow to an area . Activation of Receptor of the Postsynaptic Cell lxiv. Ionotropic Effects- when the neurotransmitter binds to a receptor on a the membrane it opens the channels for some kind of ion 42. Begin quickly and last only about 20 ms lxv. Metabotropic effects- slower and longer lasting than inotropic effects 43. Take 30 ms or more to come into play, than last seconds minutes or longer lxvi. Neuromodulator- several properties that neuropeptides that set them apart from other transmitters . Inactivation and reuptake of Neurotransmitters lxvii. Acetylcholinesterase- the enzyme that breaks down acetylcholine after it activates a receptor. xviii. Reuptake-the presynaptic neuron that takes up most of the released neurotransmitter molecules intact and reuses them 44. Occurs because of the special membrane proteins called transporters lxix. COMT- breaks down the excess dopamine into inactive chemicals that cannot stimulate the dopamine receptors lxx. Autoreceptors- receptors that detect the amount of transmitter released and inhibit further synthesis an d release after it researches a certain level. 13. Synapse, Drugs, and Addiction Modules 3. 3 . Types of Mechanisms lxxi. Antagonist- a drug that blocks the effects of a neurotransmitter lxxii. Agonist- a drug that increases or mimics the effect of a neurotransmitter lxxiii. Drugs 45. If it has an affinity for a receptor if it Binds to it. 46. A drugââ¬â¢s efficacy is its tendency to activate the receptor lxxiv. 1. Name and briefly describe the five major philosophical approaches to the mind-body problem as described in lecture. The five major philosophical approaches to the mind-body problem are interactionism, psychophysical parallelism, epiphenomenalism, materialism, and subjective idealism (or mentalism). Interactionism is a dualistic position which posits that mind and body interact with each other. Psychophysical parallelism is a dualistic position which maintains that mind and body are separate entities that operate simultaneously, but independently from one another. Epiphenomenalism is a dualistic position which states that mind is a by-product of brain activity. Materialism is a monistic position which posits that everything can be explained in physical terms, so mind is brain activity. Subjective idealism, or mentalism, states that only mind exists, all matter is simply a figment of the imagination. 2. Briefly describe (as presented in lecture) how genetic material is expressed, using the following terms: DNA, mRNA, tRNA, ribosomes, and proteins. The genetic material, DNA, is transcribed by mRNA which transports the information from the nucleus to the cytoplasm, where it is translated into proteins by means of tRNA transferring amino acids to the ribosomes in the sequence dictated by the codons on the mRNA. 1. Briefly describe (as presented in lecture) the major functions of each of the following glial cells: oligodendrocytes, Schwann cells, astrocytes, microglia, and radial glia. Oligodendrocytes function to mylenate axons in the central nervous system, while Schwann cell mylenate axons in the peripheral nervous system. Astrocytes provide nutritive and functional support for neurons. Microglia work to remove waste material around neurons. Radial glia function as guides for migrating neurons. 2. Describe the five phases of an action potential (as described in lecture). During the first phase, a depolarizing signal reaches threshold and opens the voltage-gated sodium channels. During the second phase, the influx of sodium ions causes a peak depolarization until sodium channels become refractory. During the third phase, potassium rushes out of the open potassium channels, causing re-polarization. During the fourth phase, there is an overshoot of potassium efflux and the potassium channels close, while the sodium channels reset. During the fifth stage, the excess potassium dissipates and the membrane is restored to its initial resting potential. . Name and briefly describe the five steps in synaptic transmission as presented in lecture. The first step in synaptic transmission is the influx of calcium at the axon terminals. This leads to the second step, whereby the calcium triggers the migration and fusing of synaptic vesicles with the presynaptic membrane. During the third step, the neurotransmitters from the vesicles are released into the synaptic c left, a process called exocytosis. Binding of the neurotransmitters onto receptors on the post-synaptic membrane constitutes the fourth step of synaptic transmission. The fifth step is the deactivation of the transmitter by degradation or reuptake. 2. Name and briefly describe (as presented in lecture) five ways in which drugs often interfere with synaptic transmission. The first way a drug can affect synaptic transmission is by altering the synthesis or transport of neurotransmitters. A second way is by interfering with the storage or release of transmitters. A third way is by modifying the binding of transmitters on the postsynaptic membrane. A fourth way is by binding to autoreceptors. Finally, a drug can affect the breakdown or re-uptake of a neurotransmitter.
Subscribe to:
Posts (Atom)